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INTRODUCTION 

The effectiveness Lctor is widely used to account for the interaction between pore 
diffusion and reactions on pore walls in porous catalytic pellets and solid fuel particles. The 
effectiveness factor is defined as the ratio of the reaction rate actually observed to the reaction 
rate calculated if the surface reactant concentration persisted throughout the interior of the 
particle, Le., no reactant concentration gradient within the particle. The reaction rate in a particle 
can therefore be conveniently expressed by its rate under surface conditions multiplied by the 
effectiveness factor. 

The generalized steady-state equation in a spherical particle (a catalytic pellet or a solid 
fuel particle) may be, expressed as: 

d2C 2 dC r”’ -+----=o 
dr2  r dr  D, 

where r”’ is the intrinsic reaction rate per unit particle volume in moL’cm3/sec (as a function of 
C), D, is the effective diffusivity, C is the local oxygen concentration (as a function of r), and r is 
the radial distance from the origin. The boundary conditions are 

C = C,, at r = r, (2) 

(3) and -= dC O , a t r = O  
dr 

The intrinsic reaction rate r”’ can be in different forms. One way to represent the 
intrinsic reaction rate is to use an m-th order rate equation: 

where k,,, is the kinetic coefficient in (moVcm’)l-” s e d ,  and m is the intrinsic reaction order. 
Another way is to use a Langmuir rate equation 

r”’ = k,C” (4) 

r” - klC - koKC ( 5 )  

where k,  and K are two kinetic parameters (the physical meanings of these two parameters 
depend on the mechanism leading to this rate equation), and ko is the ratio of k, to K. Note that 
the product of K and C is dimensionless. 

The exact analytical solutions for the radial oxygen concentration profile and the 
effectiveness factor have been well established when the intrinsic reaction rate is first order.’-’ 
Assuming that D, is constant throughout the particle, the exact analytical solution for the 
effectiveness factor for a first order reaction is 

I + K C  1+KC 

where rr is the radius of the particle, k is the kinetic coefficient in I/sec, and MT is the Thiele 
modulus. Eq. 6 is referred to in this paper as the first order curve. 

Bischot? developed (in Cartesian coordinates) a general modulus for an arbitrary reaction 
rate form: 

I Lr”’(C) c. _ _  
MT =-[jo D(r)r”’(r)dr] ’ 47 

where L is the characteristic length of the particle (defined as the volume of the particle/external 
surface of the particle), t is a dummy integration variable, r”’ is the intrinsic reaction rate per 
particle volume in any form, and D is the effective diffusivity, which can be a function of oxygen 
concentration, but is assumed to be constant in this study for simplicity. The use of this general 
modulus in Cartesian coordinates brought all of the curves for various m-th order rate equations 
and the Langmuir rate equation with different values of K into a relatively narrow band (see 
Figure I). In particular, the general modulus for m-th order rate equations was derived from Eq. 
8: 

1011 



For the Langmuir rate equation in Eq. 5 ,  a general modulus can be derived from Eq. 8: 

M '- - L G I + K C s  a =[KC, - In(l+ Kc?)+ (10) 

If accuracy is not a major concern, all of the 1 vs. MT curves in the narrow band can be 
approximated by the first order curve, as shown in Figure 1. The method of approximating the q 
vs. MT curve of a non-first order reaction by the first order curve is referred to in this paper as 
the first order approximation. The first order approximation method becomes more and more 
accurate as MT approaches zero and infinity. However, in the intermediate range of MT (0.2 < 
MT < 5), the first order approximation method leads to up to -34% error in Cartesian 
coordinates, as shown in Figure 1. Note that in Cartesian coordiantes the first order curve is 

while in spherical coordinates the first order curve is Eq. 6 .  
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Figure 1. The effectiveness factor curves for first order and zeroth order reactions in Cartesian 

Coordinates. For reactions between zeroth order and frst  order extremes (0 < m < 1 
or 0 < KC, < -), the curves lie in the narrow band bounded by the first order and the 
zeroth order curves. 

RESULTS AND DISCUSSION 

The Effective Reaction Order for An Arbitrary Reaction Rate Form 
From the intrinsic m-th order rate equation (Eq. 4), it is easy to get 

In(/'')= ln(k,C")= ln(k,)+ rnln(C) (12) 
From the above equation, it can be seen that if we plot In(r"') vs. In(C), we get a straight line, and 
the slope of this line is the reaction order m. Eq. 11 can be re-written as: 

d In[ (,'( C)] 
d ln(C) 

m =  

For a reaction described by a Langmuir-Hinshelwood rate equation, there is no reaction 
order in an explicit sense. However, the right-hand side of Eq. 12 can be used as the definition of 
an effective reaction order m.,, for an arbitrarv reaction rate form. 

(14) 

We now apply this definition to the Langmuir rate equation. Substitution of the Langmuir rate 
equation into Eq. 14 gives 

Note that for a Langmuir type reaction the In(r"') vs. In(C) curve is not a straight line. The slope 
of the curve (which is men) is dependent on the local oxygen concentration. At the surface 
oxygen concentration C,, the effective reaction order is 
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m<fl,s = - for the Langmuir rate equation (16.L) 

Note that for an m-th order rate euqation, the effective reaction order is always equal to m. 
Therefore, 

(1 6.m) 

1 + KC, 

m<fl.. = m for an m-th order rate equation 

Evaluation of the First Order Approximation in Spherical Coordinates 

Since catalytic pellets and porous solid fuel particles can be approximated more or less by 
spheres, rather than by semi-infinite flat-slabs, it is of more interest to study the performance of the 
first order approximation method in spherical coordinates. The values of the effectiveness factor 
predicted by the first order curve (Eq. 6) using the general moduli in Eqs. 9 and IO were compared 
to the numerical solutions. It was found that in spherical coordinates, the first order approximation 
method predicted the effectiveness factor more accurately than in Cartesian coordinates, with errors 
ranging from -17% to 0% (see Table 1). In other words, all of the curves for various values of 
q,, were brought into a narrower band in spherical coordinates than the band in Cartesian 
coordinates (see Figures 1 and 2). From Table I ,  it can be seen that: I )  as the value of y gets 
away from 0.707 in both directions, the error diminishes rapidly to zero; 2 )  as q{,,,, decreases 
from unity to zero, the error increases from zero to -17%. 
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Figure 2. Effectiveness factor curves for first order and zeroth order reactions in spherical 

coordinates. For reactions described by the Langmuir and m-th order rate equations, 
the curves lie in the narrow band bounded by the first order and zeroth order curves. 
The dotted line in the band corresponds to m = 0.5 and corresponds approximately to 
KC, = 1 0.5 for both m-th order and Langmuir rate equations). 

Table 1. The Errors (%) of the First Order Approximation Method Using 
the Modulus in Eq. 10 
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Correction Function 

It has been shown that in the intermediate range of MT (0.2 < MT < 9, the first order 
approximation method leads to up to -17% error. It is desirable to reduce the error using a 
multiplier with the first order curve (Eq. 6). Two correction functions were constructed to 
counter the errors associated with the first order approximation methods for m-th order rate 
equations and the Langmuk rate equation, respectively. By using the effective reaction order 
evaluated at the external surface oxygen concentration, these two correction functions can be 
unified into 

where wn,$ = m for m-th order rate equations, and 

The correction function is used as a multiplier before the right-hand-side of Eq. 6: 
mR,, = I/( I+KC,) for Langmuir rate equations. 

Note that this correction function is designed only for correcting the first order approximation in 
spherical coordinates, but not in Cartesian coordiantes. 
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General Thiele Modulus Effective Reaction Order In Eq.16 

Figure 3. The correction function f vs. Thiele modulus M, and the effective reaction order at 
external surface me,,. 

Accuracy of the corrected first order approximation 

Compared to numerical solutions, the corrected first order approximation predicts the . 
effectiveness factor within 3.0% errors (see Table 2). After the effectiveness factor is obtained, 
the overall reaction rate in a spherical particle can be easily calculated using 

for a m-th order type reaction, and 

for a reaction described by the Langmuir rate equation. 

CONCLUSIONS 

Two correction functions were cons tk ted  to improve the accuracy of predicting the 
effectiveness factor for the Langmuir and m-th order rate equations, respectively. By using the 
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inbinsic effective reaction order evaluated at surface concentration, these two correction 
functions were unified (see Eq. 17). 

able to predict the effectiveness factor for m-th order rate equations and the Langmuir rate 
equation within 3% in the whole range of MT (including Zone I, Zone I1 and especially the 
transition zone). This "corrected first order approximation method uses explicit analytical 
expressions to predict the effectiveness factor, and therefore is particularly suitable for repeated 
use in comprehensive computer codes. 

The first order curve combined with the correction function developed in this study was 

Table 2. The Errors  of the  Corrected First  Orde r  Approximation 
Method Using the Proposed Modulus in Eq. 10 

Note: The errors of the corrected first order approximation method using 
the general Thiele modulus in Eq. 9 are almost identical to the values in 
this table. 
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